[1]韩胜发,刘欢迎,申彪.国土空间规划视角下的城市空间结构研究——基于多源数据的宿州实证分析[J].中国名城,2022,36(10):15-23.[doi:10.19924/j.cnki.1674-4144.2022.10.003]
HAN Shengfa,LIU Huanying,SHEN Biao.Research on Urban Spatial Structure from the Perspective of Territory Spatial Planning:Empirical Analysis of Suzhou Based on Multi-Source Data[J].China Ancient City,2022,36(10):15-23.[doi:10.19924/j.cnki.1674-4144.2022.10.003]
点击复制
国土空间规划视角下的城市空间结构研究——基于多源数据的宿州实证分析()
中国名城[ISSN:1674-4144/CN:32-1793/GO]
- 卷:
-
36
- 期数:
-
2022年10期
- 页码:
-
15-23
- 栏目:
-
- 出版日期:
-
2022-10-05
文章信息/Info
- Title:
-
Research on Urban Spatial Structure from the Perspective of Territory Spatial Planning:Empirical Analysis of Suzhou Based on Multi-Source Data
- 文章编号:
-
1674-4144(2022)010-0015-09
- 作者:
-
韩胜发; 刘欢迎; 申彪
-
韩胜发,上海同济城市规划设计研究院有限公司高级工程师;刘欢迎,宿州市自然资源和规划局副局长;申 彪,宿州市自然资源和规划局 四级调研员。
- Author(s):
-
HAN Shengfa; LIU Huanying; SHEN Biao
-
-
- 关键词:
-
手机信令数据; 专利数据; 密度格局; 功能时段; 宿州市
- Keywords:
-
mobile signaling data; patent data; density pattern; functional period; Suzhou City
- 分类号:
-
TU984
- DOI:
-
10.19924/j.cnki.1674-4144.2022.10.003
- 文献标志码:
-
A
- 摘要:
-
从国土空间规划的视角出发,以安徽省宿州市为例,利用第三次全国土地调查数据、手机信令数据、兴趣点数据、高新技术企业数据,采用用地分类与人群、设施、企业分布密度格局相叠合的分析方法,识别中心体系、轴线体系和功能分区。首先,汇总分析工作日和休息日手机信令数据,结合人群活动规律确定居住时段、就业时段、游憩时段和高峰时段。其次,运用核密度分析法和网格分析法模拟基于手机信令数据的人群活动密度格局。再次,将密度格局叠合兴趣点数据、专利数据、科研人员数据、科研资金数据和三调数据确定城市中心体系、城市专业中心体系和功能轴线体系。最后,采用分时段的人群活动密度格局叠合三调数据识别居住、就业、交通、科创和游憩功能分区。
- Abstract:
-
From the Angle of view of the national spatial planning in Suzhou City, Anhui Province as an example, the use of the third national land survey data, mobile phone signal data, point of interest data, high and new technology enterprise, the land use classification and the crowd, the facilities, the enterprise pattern of distribution density of composite analysis method, identification center system, the axis system and functional partition. Firstly, by using mobile location data, POI data,high-tech enterprises and third national land investigation data, summarize and analyze the mobile signaling data on weekdays and rest days, and determine the residence period, employment period, recreation period and peak period in combination with the law of crowd activities. Secondly, using kernel density analysis and grid analysis to simulate the population activity density pattern based on mobile phone signaling data. Thirdly, the density pattern is combined with POI data, patent data, scientific research personnel data, scientific research fund data and third national land investigation data to determine the urban center hierarchy system, urban professional center system and functional axis system. Finally, the leading functional zones of residence, employment, transportation, science & innovation and recreation is identified by the population activity density pattern in different characteristic periods, combined with the third national land investigation data.
更新日期/Last Update:
2022-12-01